The Standard Model of particle physics is a theory concerning the electromagnetic, weak, and strong nuclear interactions, which mediate the dynamics of the known subatomic particles. Developed throughout the mid to late 20th century, the current formulation was finalized in the mid 1970s upon experimental confirmation of the existence of quarks. Since then, discoveries of the bottom quark (1977), the top quark (1995) and the tau neutrino (2000) have given further credence to the Standard Model. Because of its success in explaining a wide variety of experimental results, the Standard Model is sometimes regarded as a "theory of almost everything".
The Standard Model falls short of being a complete theory of fundamental interactions because it does not incorporate the physics of dark energy nor of the full theory of gravitation as described by general relativity. The theory does not contain any viable dark matter particle that possesses all of the required properties deduced from observational cosmology. It also does not correctly account for neutrino oscillations (and their non-zero masses). Although the Standard Model is believed to be theoretically self-consistent, it has several apparently unnatural properties giving rise to puzzles like the strong CP problem and the hierarchy problem.
Nevertheless, the Standard Model is important to theoretical and experimental particle physicists alike. For theorists, the Standard Model is a paradigmatic example of a quantum field theory, which exhibits a wide range of physics including spontaneous symmetry breaking, anomalies, non-perturbative behavior, etc. It is used as a basis for building more exotic models that incorporate hypothetical particles, extra dimensions, and elaborate symmetries (such as supersymmetry) in an attempt to explain experimental results at variance with the Standard Model, such as the existence of dark matter and neutrino oscillations. In turn, experimenters have incorporated the Standard Model into simulators to help search for new physics beyond the Standard Model.
Recently, the Standard Model has found applications in fields besides particle physics, such as astrophysics, cosmology, and nuclear physics. Read more ...
Breaks in the Perfect Symmetry of the Universe Could Be a Window Into Completely New Physics Live Science - June 14, 2019
The bible of particle physics is dying for an upgrade. And physicists may have just the thing: Some particles and forces might look in the mirror and not recognize themselves. That, in itself, would send the so-called Standard Model into a tailspin. Just about all fundamental reactions between the universeÕs subatomic particles look the same when they are flipped around in a mirror. The mirror-image, called parity, is then said to be symmetrical, or to have parity symmetry, in physics speak. Of course, not everyone follows the rules. We know that, for instance, reactions involving the weak nuclear force, which is also weird for a whole bunch of other reasons, violates parity symmetry. So it stands to reason other forces and particles in the quantum world are also rule-breakers in this area.